1,853 research outputs found

    Secondary radiation from the Pamela/ATIC excess and relevance for Fermi

    Full text link
    The excess of electrons/positrons observed by the Pamela and ATIC experiments gives rise to a noticeable amount of synchrotron and Inverse Compton Scattering (ICS) radiation when the e^+e^- interact with the Galactic Magnetic Field, and the InterStellar Radiation Field (ISRF). In particular, the ICS signal produced within the WIMP annihilation interpretation of the Pamela/ATIC excess shows already some tension with the EGRET data. On the other hand, 1 yr of Fermi data taking will be enough to rule out or confirm this scenario with a high confidence level. The ICS radiation produces a peculiar and clean "ICS Haze" feature, as well, which can be used to discriminate between the astrophysical and Dark Matter scenarios. This ICS signature is very prominent even several degrees away from the galactic center, and it is thus a very robust prediction with respect to the choice of the DM profile and the uncertainties in the ISRF.Comment: 5 pages, 3 figures; v2: improved figures, enlarged discussion on the gamma signal and data; to appear in ApJ

    The boson-fermion model: An exact diagonalization study

    Full text link
    The main features of a generic boson-fermion scenario for electron pairing in a many-body correlated fermionic system are: i) a cross-over from a poor metal to an insulator and finally a superconductor as the temperature decreases, ii) the build-up of a finite amplitude of local electron pairing below a certain temperature TT^*, followed by the onset of long-range phase correlations among electron pairs below a second characteristic temperature TϕT_{\phi}, iii) the opening of a pseudogap in the DOS of the electrons below TT^*, rendering these electrons poorer and poorer quasi-particles as the temperature decreases, with the electron transport becoming ensured by electron pairs rather than by individual electrons. A number of these features have been so far obtained on the basis of different many-body techniques, all of which have their built-in shortcomings in the intermediate coupling regime, which is of interest here. In order to substantiate these features, we investigate them on the basis of an exact diagonalization study on rings up to eight sites. Particular emphasis has been put on the possibility of having persistent currents in mesoscopic rings tracking the change-over from single- to two-particle transport as the temperature decreases and the superconducting state is approached.Comment: 7 pages, 8 figures; to be published in Phys. Rev.

    Magnetic and orbital ordering in cuprates and manganites

    Full text link
    The mechanisms of magnetic and orbital interactions due to double exchange (DE) and superexchange (SE) in transition metal oxides with degenerate e_g orbitals are presented. Specifically, we study the effective spin-orbital models derived for the d^9 ions as in KCuF_3, and for the d^4 ions as in LaMnO_3, for spins S=1/2 and S=2, respectively. Such models are characterized by three types of elementary excitations: spin waves, orbital waves, and spin-and-orbital waves. The SE interactions between Cu^{2+} (d^9) ions are inherently frustrated, which leads to a new mechanism of spin liquid which operates in three dimensions. The SE between Mn^{3+} (d^4) ions explains the A-type antiferromagnetic order in LaMnO_3 which coexists with the orbital order. In contrast, the ferromagnetic metallic phase and isotropic spin waves observed in doped manganites are explained by DE for degenerate e_g orbitals. It is shown that although a hole does not couple to spin excitations in ferromagnetic planes of LaMnO_3, the orbital excitations change the energy scale for the coherent hole propagation and cause a large redistribution of spectral weight. Finally, we point out some open problems in the present understanding of doped manganites.Comment: 155 pages, 66 figure

    Radio constraints on dark matter annihilation in the galactic halo and its substructures

    Get PDF
    Annihilation of Dark Matter usually produces together with gamma rays comparable amounts of electrons and positrons. The e+e- gyrating in the galactic magnetic field then produce secondary synchrotron radiation which thus provides an indirect mean to constrain the DM signal itself. To this purpose, we calculate the radio emission from the galactic halo as well as from its expected substructures and we then compare it with the measured diffuse radio background. We employ a multi-frequency approach using data in the relevant frequency range 100 MHz-100 GHz, as well as the WMAP Haze data at 23 GHz. The derived constraints are of the order =10^{-24} cm3 s^{-1} for a DM mass m_chi=100 GeV sensibly depending however on the astrophysical uncertainties, in particular on the assumption on the galactic magnetic field model. The signal from single bright clumps is instead largely attenuated by diffusion effects and offers only poor detection perspectives.Comment: 12 pages, 7 figures; v2: some references added, some discussions enlarged; matches journal versio

    Control of magnetism in singlet-triplet superconducting heterostructures

    Get PDF
    We analyze the magnetization at the interface between singlet and triplet superconductors and show that its direction and dependence on the phase difference across the junction are strongly tied to the structure of the triplet order parameter as well as to the pairing interactions. We consider equal spin helical, opposite spin chiral, and mixed symmetry pairing on the triplet side and show that the magnetization vanishes at ϕ=0\phi=0 only in the first case, follows approximately a cosϕ\cos\phi behavior for the second, and shows higher harmonics for the last configuration. We trace the origin of the magnetization to the magnetic structure of the Andreev bound states near the interface, and provide a symmetry-based explanation of the results. Our findings can be used to control the magnetization in superconducting heterostructures and to test symmetries of spin-triplet superconductors.Comment: 5 pages, 3 figure

    Astrophysical interpretation of the medium scale clustering in the ultra-high energy sky

    Full text link
    We compare the clustering properties of the combined dataset of ultra-high energy cosmic rays events, reported by the AGASA, HiRes, Yakutsk and Sugar collaborations, with a catalogue of galaxies of the local universe (redshift z<~0.06). We find that the data reproduce particularly well the clustering properties of the nearby universe within z <~0.02. There is no statistically significant cross-correlation between data and structures, although intriguingly the nominal cross-correlation chance probability drops from ~50% to ~10% using the catalogue with a smaller horizon. Also, we discuss the impact on the robustness of the results of deflections in some galactic magnetic field models used in the literature. These results suggest a relevant role of magnetic fields (possibly extragalactic ones, too) and/or possibly some heavy nuclei fraction in the UHECRs. The importance of a confirmation of these hints by Auger data is emphasized.Comment: 10 pages, 7 figures; one reference adde

    The footprint of large scale cosmic structure on the ultra-high energy cosmic ray distribution

    Full text link
    Current experiments collecting high statistics in ultra-high energy cosmic rays (UHECRs) are opening a new window on the universe. In this work we discuss a large scale structure model for the UHECR origin which evaluates the expected anisotropy in the UHECR arrival distribution starting from a given astronomical catalogue of the local universe. The model takes into account the main selection effects in the catalogue and the UHECR propagation effects. By applying this method to the IRAS PSCz catalogue, we derive the minimum statistics needed to significatively reject the hypothesis that UHECRs trace the baryonic distribution in the universe, in particular providing a forecast for the Auger experiment.Comment: 21 pages, 14 figures. Reference added, minor changes, matches published versio

    Angular Signatures of Annihilating Dark Matter in the Cosmic Gamma-Ray Background

    Full text link
    The extragalactic cosmic gamma-ray background (CGB) is an interesting channel to look for signatures of dark matter annihilation. In particular, besides the imprint in the energy spectrum, peculiar anisotropy patterns are expected compared to the case of a pure astrophysical origin of the CGB. We take into account the uncertainties in the dark matter clustering properties on sub-galactic scales, deriving two possible anisotropy scenarios. A clear dark matter angular signature is achieved when the annihilation signal receives only a moderate contribution from sub-galactic clumps and/or cuspy haloes. Experimentally, if galactic foregrounds systematics are efficiently kept under control, the angular differences are detectable with the forthcoming GLAST observatory, provided that the annihilation signal contributes to the CGB for a fraction >10-20%. If, instead, sub-galactic structures have a more prominent role, the astrophysical and dark matter anisotropies become degenerate, correspondingly diluting the DM signature. As complementary observables we also introduce the cross-correlation between surveys of galaxies and the CGB and the cross-correlation between different energy bands of the CGB and we find that they provide a further sensitive tool to detect the dark matter angular signatures.Comment: 13 pages, 8 figures; improved discussion; matches published versio

    Coexistence of ferromagnetism and singlet superconductivity via kinetic exchange

    Full text link
    We propose a novel mechanism for the coexistence of metallic ferromagnetism and singlet superconductivity assuming that the magnetic instability is due to kinetic exchange. Within this scenario, the unpaired electrons which contribute to the magnetization have a positive feedback on the gain of the kinetic energy in the coexisting phase by undressing the effective mass of the carriers involved into the pairing. The evolution of the magnetization and pairing amplitude, and the phase diagram are first analyzed for a generic kinetic exchange model and then are determined within a specific case with spin dependent bond-charge occupation.Comment: 4 pages, 2 figure
    corecore